博客
关于我
sdut 懒虫小鑫(快排里面,再加一个排序)
阅读量:780 次
发布时间:2019-03-25

本文共 582 字,大约阅读时间需要 1 分钟。

小鑫有n块矿石,每块矿石有两个属性:重量w和价值p。他每天能卖m块矿石,每次都会选重量最小的,如果多个重量相同则选价值高的。我们的目标是计算他能卖出m块矿石后所能得到的总价值。

首先,我们对所有矿石按照重量从小到大排序,同重量时按价值从高到低排序。这样排列后,前m个矿石的价值总和就是最大化的。这是因为在保证每天卖的都是重量最轻的前提下,这样能在总重量最小的前提下获得最大的价值。

具体步骤:

  • 将所有矿石按重量从小到大排序,当重量相同时,按价值从高到低排序。
  • 取前m个矿石,计算它们的价值总和。
  • 这样可以确保总价值最大化。对于输入的矿石,进行上述排序后,计算总和即可。

    现在,来看具体实现。首先,对输入的矿石进行排序,然后取前m个,计算它们的价值之和。

    代码示例如下:

    n, m = map(int, input().split())stones = []for _ in range(n):    w, p = map(int, input().split())    stones.append((w, p))# 按重量升序,价值降序排序stones.sort(key=lambda x: (x[0], -x[1]))total = sum(p for w, p in stones[:m])print(total)

    这样,我们就能得到小鑫总能赚到的最多钱数。

    转载地址:http://bjbuk.baihongyu.com/

    你可能感兴趣的文章
    Netty遇到TCP发送缓冲区满了 写半包操作该如何处理
    查看>>
    netty(1):NIO 基础之三大组件和ByteBuffer
    查看>>
    Netty:ChannelPipeline和ChannelHandler为什么会鬼混在一起?
    查看>>
    Netty:原理架构解析
    查看>>
    Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
    查看>>
    Network Sniffer and Connection Analyzer
    查看>>
    Network 灰鸽宝典【目录】
    查看>>
    Networkx写入Shape文件
    查看>>
    NetworkX系列教程(11)-graph和其他数据格式转换
    查看>>
    Networkx读取军械调查-ITN综合传输网络?/读取GML文件
    查看>>
    network小学习
    查看>>
    Netwox网络工具使用详解
    查看>>
    Net与Flex入门
    查看>>
    net包之IPConn
    查看>>
    net发布的dll方法和类显示注释信息(字段说明信息)[图解]
    查看>>
    Net操作配置文件(Web.config|App.config)通用类
    查看>>
    NeurIPS(神经信息处理系统大会)-ChatGPT4o作答
    查看>>
    neuroph轻量级神经网络框架
    查看>>
    Neutron系列 : Neutron OVS OpenFlow 流表 和 L2 Population(7)
    查看>>
    NEW DATE()之参数传递
    查看>>